

Transport Protocols for Optical Burst Switched Networks

Moving Beyond Lightpaths

Arnold Bragg

Advanced Networking Research Division MCNC Research and Development Institute Research Triangle Park, NC 27709 USA

abragg@anr.mcnc.org

Acknowledgments

Co-authors and contributors:

Ilia Baldine	Joel Hernandez	Dan Stevenson
Arnold Bragg	Bonnie Hurst	Steve Thorpe
Stephanie Bryant	Gigi Karmous-Edwards	Raghu Uppali
Mark Cassada	Mike Pratt	Xiaoyong Wu

Sponsors:

- NASA under award NAG2-1467
- The US Intelligence Community under ARDA contracts MDA 904-00-C-2133 and MDA 904-02-C-0482

· Disclaimer:

- "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsor(s)."

Topics

- What is optical burst switching?
- What does OBS have to do with fast, long distance networks?
- What's been done?
- Main points

What is optical burst switching?

PFLDnet '04 - Feb 2004 4

What is optical burst switching?

- WDM puts 10s to 100s of wavelength channels (λs) on a single optical fiber
 - A way to share links
 - Typically provision a λ for a source/destination pair
 - Can perhaps switch λs
- · Add an OBS overlay
 - Provision λs for any duration
 - Switch and manage λs
 - Use features to greatly reduce contention & blocking
 - Share λs in time via fast provisioning & switching

Provisioning and sharing λs

- Provisioning and sharing are important concepts
- · Optical circuit switching
 - λ provisioning in minutes to months; long holding times
 - Unshared λ per s/d pair, or sharing via grooming or muxing
- Optical packet switching
 - λ provisioning in ns
 - Goal is all-optical; this requires optical buffers and optical header parsing
 - May be 10+ years out
- Optical burst switching
 - λ provisioning in ns, μ s, ms
 - Short(er) holding times
 - No buffering in core
 - Header info out of band

Just a thin overlay ...

OBS-aware networks

- Data & control planes
- Protocol agnostic
- Subtending realms can be anything, including analog
- Some architectures use COTS optical switching gear (OEO, OOO)
- Control plane is a thin signaling overlay
- Control plane can be implemented in h/w or in s/w
- No global synchronization

IP Router - Trrrr aware IP/packets **IP** Router **OBS** network IP bursts aware OBS aware Edge Node Core Node Optical Link data bursts Wavelengths control packets Core IP Router IIIII **Control plane** IP Router 3. Management plane Edge 7

Several scenarios

Real or hype?

Controller

- Test bed deployment; all-optical COTS core switch in background;
- OBS hardware controllers (v1) on rack in foreground
- Software controllers have also been developed

- OBS-aware edge device
 - NIC, or aggregator, or OBS-aware host, or ...

What does OBS have to do with fast long distance networks?

PFLDnet '04 - Feb 2004 10

What does OBS have to do with FLDNs?

- 'Bored chameleon' nature of OBS is useful for many FLDN applications
 - Many shades of λ provisioning
 - Circuit -- rapidly provisioned, any duration
 - Tunnel -- intermittent traffic transiting a 'pinned route'
 - · Packet(s) -- on-the-fly, per-burst routed; or flow routed
 - Anycast -- unicast, multicast, broadcast
 - Network core's data plane is unconcerned with payload, protocol, rate, format, encoding, modulation scheme, ...
- Transport layer (i.e., L4) can take advantage of this
 - Some transport layer services are superfluous; e.g.,
 - · OBS pinned routes guarantee sequenced delivery
 - · OBS persistent paths guarantee zero (added) jitter
 - OBS-specific modifications can streamline transport protocols and protocol stacks

What does OBS have to do ...? (cont.)

- · Performance
 - Today's dedicated circuits ('lightpaths') have some limitations
 - Scalability
 - A few tens of λ available even in DWDM networks
 - Lightpaths are usually not (rapidly) switched
 - Efficiency
 - Lightpaths hold, but rarely use, all of the bandwidth reserved for them
 - Most don't share bandwidth
 - Ultra fast provisioning/release of resources \rightarrow more efficient sharing of bandwidth \rightarrow multiplexing gain
 - With an OBS-aware edge device, you can shape traffic
 - To control or contain aggressive protocols
 - · To provide fine-grained rate controls, pacing, ...
 - Etc.

Keep it simple

- · You don't need all four pieces
 - (4) Edge devices are optional
 - (3) Management plane is optional
 - Stateful overlay
 - Robust QoS-aware forwarding/routing
 - OAM, network management, etc.
 - (2) Control plane is required
 - Ultra fast provisioning
 - Fine-grained multiplexing via ultra short-lived lightpaths
 - Several flavors (bronze [s/w], silver/gold/platinum [h/w])
 - Inexpensive and unobtrusive overlay
 - (1) 'Core' is unmodified COTS gear
 - · No forklift upgrades in the core; simple configuration
- (1) + (2) above are sufficient to provide ultra fast provisioning and fine-grained multiplexing

Performance

- So why not use GMPLS with RSVP or CR-LDP?
 - Slower provisioning, reliable signaling, longer holding times
- For ultra fast provisioning, short(er) holding times:
 - Simplex ("tell and go") OOB signaling; no multi-way handshake
 - Holding times on the order of milliseconds to hours
 - No "lambda tax"
 - Add an OBS edge if you need it (NIC, aggregator, aware host, ...)
- Signaling performance*

	Hardware v1	FPGA (Altera EP20K400)	~ 12.5 µs (80K setups/s)
	Hardware v2	FPGA	~ 10x improvement
	Hardware v2	ASIC	~ 100x improvement
	Software	Commodity GHz PC	~ 3-10x slower

^{*} Does not include switch configuration, transmission, propagation delays

What's been done?

PFLDnet '04 - Feb 2004 15

Usual approach

- I work with a ____ network architecture
- In this architecture, my application is most efficient when the transport protocol is ____, so I'll use that

<u>OR</u>

- I have a set of transport protocols, and I'll choose what's best in this architecture for my application
- One degree of freedom
 Application x network configuration x {transport protocols}

Core + control plane (1+2) approach

- I work with a quasi-configurable network, capable of fast provisioning/release, route pinning, fine-grained multiplexing, ...
- My application is most efficient when the network is configured to appear (to my application) as a
 - · Circuit rapidly provisioned, any duration; or
 - Tunnel pinned route pipe; or
 - Flow with on-the-fly, per-burst forwarding; or ...
- I'll choose a network configuration option
- I'll choose an efficient transport protocol for that configuration
- Two degrees of freedom

Application x {network configurations} x {transport protocols}

However ...

- Some transport layer services are superfluous in configurable networks
- · Why?
 - Performance dimension; e.g.,
 - No buffering in the core -- no queue delay/jitter/loss issues
 - Quick (µs) blocking indication -- no lengthy timeout intervals
 - Signaling is simplex -- no round-trip setup delay
 - Data follows signaling after a short head start, so there isn't even a one-way setup delay
 - Transport layer services dimension; e.g.,
 - · Sequenced delivery service provided via route pinning
 - No jitter added in transit
 - · Flows can be prioritized and preempted in the core
 - Can use the signaling channel for L4 ACKs, SACK, rates, etc.
 - Etc.

New approach

- My application is ____ and has these characteristics
 - I can provide them, or they can be inferred
- My application needs a network configuration of some type
 - I can choose, or my application can choose
- My application needs a transport protocol
 - I can choose, or my application can choose
 - I may not need all the services that the TP offers because the network configuration provides these services
- · My application can choose from a reduced set of:
 - Feasible configuration and transport protocol combinations
 - Transport layer services
- So what?
 - (1) A-/u- initiated configuration; (2) 'tuned' TPs; (3) new TPs

Application-initiated network configuration

Time

- Given the performance above, I'd like to:
 - Shorten provisioning time (at left)
 - Shorten release time (off scale at right)
 - Reallocate the unused bandwidth (at top)

Application-initiated network ... (cont.)

- Team has developed an API for grid service clients
 - For user-/application-initiated provisioning
 - To provide improved performance -- scalability and efficiency
 - Supports application-initiated, GSI-authenticated, network connections via an OGSA interface
 - Client application is responsible for sending/receiving data once a connection has been provisioned
 - Requires relatively little information for provisioning
 - Addresses, paths
 - Timer intervals
 - Setup ACKs (y/n)
 - Explicit release of lightpath (y/n), etc.
 - Proof-of-concept stage
 - Deployment by 3Q 2004

'Tuned' transport protocols

- Given the performance above, I'd like to:
 - Shorten provisioning and release times (left, right)
 - Reallocate the unused bandwidth (top)
 - Reallocate during dropouts (at bottom)

'Tuned' transport protocols (cont.)

- Team has modified the Scheduled Transfer (ST) transport protocol (ANSI INCITS 337-2000)
 - To support application-initiated network connections via the TP
 - The modified TP (ST+) initiates signaling for data transfers as required
 - Implemented on SGI hosts with IRIX and Linux kernel mods
 - Testbed deployment with SGI hosts on paths transiting multiple OXCs over a 100 Km diameter network
 - Significantly leaner protocol stack

New protocols

- · We said ...
 - Some transport layer services are <u>superfluous</u> in easily configured networks
 - Performance dimension
 - Transport services dimension
 - My application ... has these characteristics ...
 - My application needs a network configuration of ... type
 - My application needs a transport protocol ...
 - I may not need all the services that the TP offers
 - My application can choose from a reduced set of:
 - Feasible configuration and transport protocol combinations
- Transport layer services
 - Implement some services in hardware
- Ideas about the design of new transport protocols operating in OBS-aware networks, or (1)+(2) networks

New protocols (cont.)

New protocols (cont.)

- Build on architectural features of quasi-configurable networks
- Adaptively monitor, so transport services vary so as to maintain QoS objectives in response to changing conditions
 - Mitigate retransmissions
 - Assert preemption and prioritization
- Burst assembler/scheduler and transport layer can work in concert to provide a number of useful services
- Use an OBS-aware edge device
 - Hardware-assisted rate and flow control, shaping
 - Varying degrees of determinism; e.g., burst by size (probabilistic delay bounds) or by time (deterministic)
 - Control or containment of aggressive protocols

Main points

PFLDnet '04 - Feb 2004 27

Main points

- 1. Simple overlay for big science and other high performance networks
 - · Works with unmodified COTS gear; simple to configure; agnostic
 - (1) + (2) sufficient for ultra fast provisioning and some muxing
 - Add (4), or (3) + (4) for ultra fine-grained multiplexing
 - Significant performance advantages
- 2. Application $x \{TPs\} \longrightarrow application x \{TPs\} \times \{netConfigs\}$
 - {TPs} x {netConfigs} has some important implications
 - Potential overlap between TP services and what network provides
 - TPs tuned to use net-provided services
 - New or modified TPs in which some services are handed off to the configurable network (edge and/or core)
- 3. Good fit for applications in FLDnets and grids
 - Performance advantages; chameleon nature
 - User- and application-initiated provisioning

Arnold Bragg

Advanced Networking Research Division MCNC Research and Development Institute Research Triangle Park, NC 27709 USA

abragg@anr.mcnc.org

PFLDnet '04 - Feb 2004 29